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LETTER TO THE EDITOR 

Universality classes of critical antiferromagnets 

Henrik Johannesson 
Institute of Theoretical Physics, S-41296 Goteborg, Sweden 

Received 17 August 1988 

Abstract. We derive the possible values of the conformal anomaly number c for the 
integrable Heisenberg antiferromagnet with planar anisotropy y = P /  Y (0 < y ~ / 2 )  in 
the case where v is a rational number. For given spin S, with U > 2S, we find c = 3 S / ( S +  I ) ,  
suggesting a renormalisation onto the k = 2.9 Wess-Zumino-Witten fixed point. In contrast, 
for v s 2s a new renormalisation behaviour is revealed, with 2s - 1 distinct universality 
classes indexed by the integer part of v. 

Recent advances in conformal field theory have made possible a new attack on the 
longstanding problem of understanding the critical behaviour of antiferromagnetic 
quantum spin chains. As is well known, the strong quantum fluctuations present at 
the critical point, T=O, make this a very subtle problem. While a rather complete 
theory exists for spin-; due to the pioneering work by Luther and Peschel (1975), 
independently supported by analytical (Haldane 1980, Izergin and Korepin 1985) as 
well as numerical calculations (see Moreo (1987) and references therein), it is only 
now that a picture for the higher-spin models is beginning to emerge (Affleck 1985, 
1986a, b, Affleck and Haldane 1987, Affleck et aZ1988). In the isotropic case all critical 
theories are given by the SU(2) Wess-Zumino-Witten (wzw) models with topological 
coupling k, a positive integer. The stable fixed point is k = 1 (Schulz 1986, Ziman and 
Schulz 1987), corresponding to a free massless boson, which attracts a large set of 
half-odd-integer spin models, including those with pure exchange interactions (minimal 
models). In contrast, integer-spin Hamiltonians generically exhibit non-critical 
behaviour, the criticality being suppressed by the collective excitations acquiring a 
mass (Haldane 1983a, b). The higher-k theories, on the other hand, represent multi- 
critical points in the space of spin interactions, with the integrable spin-S Hamiltonians 
(Takhtajan 1982, Babujian 1983, Johannesson 1986) being attracted to the k = 2s 
multicritical point, i.e. the central charge (conformal anomaly number) of the under- 
lying Virasoro algebra is here given by c = 3S/(S + 1). 

Of obvious interest is to understand how to pass to the case of anisotropic spin 
interactions, i.e. when the global SU(2) symmetry is broken down to U(1). Not only 
do most one-dimensional magnets in the laboratory exhibit anisotropies, but the most 
interesting theoretical applications of spin-chain physics, to quantum field theory and 
many-particle problems in general, typically require the introduction of an anisotropy. 

In this case one expects c = 1 at criticality, i.e renormalisation onto a free boson 
(Affleck 1985). It was recently shown, however, (Johannesson 1988) that the conformal 
anomaly number of the integrable higher-spin Heisenberg antiferromagnet with planar 
anisotropy y = T/ Y (Sogo 1984, Kirillov and Reshetikin 1985, 1987a, b, Babujian and 

0305-4470/88/231157 +06$02.50 0 1988 IOP Publishing Ltd L1157 



L1168 Letter to the Editor 

Tsvelick 1986) remains at the value c = 3 S ( S  + 1) when v is an integer greater than 2s. 
In other words, the introduction of an anisotropy of this type does not destabilise the 
k = 2s multicritical point. This result is rather remarkable since it implies that the 
fluctuations of the wzw fields remain massless despite the chiral symmetry of the theory 
having been lowered from SU(2) to U(1). This suggests that some hidden symmetry 
is now protecting the massless sector. 

In this letter we wish to extend our analysis to the case where v is a rational number 
greater than or equal to 2, i.e. with 0 < y S ~ / 2 .  While for v > 2 s  we recover the result 
obtained for integer v, a novel phenomenon is encountered when v C 2s :  the conformal 
anomaly is now indexed by the parameter [U], where [ v] is the largest integer less 
than or equal to U. Hence, in this case there is a variety of possible renormalisation 
fixed points which can be made attractive by proper tuning of the anisotropy. Put 
differently, the types of relevant operators produced under renormalisation now depend 
on how the value for the anisotropy parameter has been chosen. Unfortunately, the 
mechanism which gives rise to this unusual behaviour seems rather elusive. 

We begin by defining the Hamiltonian. Let V, be a copy of C2’” with j = 1, .  . . , N, 
VI = V N + ,  . Then (Kirillov and Reshetikin 1985) 

U = -2i yS 
2 s  2j-l 

j=2S-1 k =O 
-iN n sinh(u+iyj) n sinh[u+iy(2S+k)] 

(1) 

where <,j+l is the exchange operator in v:.O V,+, and Rj,j+l is a linear operator acting 
in the same space, obtained by the standard fusion procedure (Kulish et al 1981) from 
the elementary Baxter bundles 

Rj,j+l( 1 I U, y )  = sinh[u + f i  y(1+ afaj’+,)] + i  sin y ( ~ , f u j + ~  + U ~ U ; + ~ ) .  (2) 

Here U* = uX f ivy, U’ are the Pauli matrices. By choosing S = 4 in ( l ) ,  the usual X X Z  
model is recovered: 

where the prefactor is due to the normalisation in (1). Choosing S = 1 gives (Zamolod- 
chikov and Fateev 1980) 

Y N  c s j ~ s , + l - ( s j ~ s j + 1 ) 2 - 2 ( c o s  y-1) HI = 
2 sin(2y) j = l  

x [(S,XS,X+, + s:s,.,l,s:s:+l+ s:s:+l(~;s;+l- s;s;+l)I 
+2sin2 y ( 1 - ~ f ~ : , , ) ~ , ’ ~ : + , + 4 s i n ~  y (s:)‘ S I = S N + l  (4) 

where S”, Sy ,  and S’ are the spin-1 operators in C3. As already mentioned, we shall 
require that 0 < y S r / 2 .  

It might be worthwhile pointing out that, despite its formidable appearance, the 
Hamiltonian in (1) defines an extremely simple dynamics, distinguished by exhibiting 
no mixing of the momentum distribution, as follows from its complete integrability. 

The model can be diagonalised exactly by  a Bethe ansatz (Sogo 1984, Kirillov and 
Reshetikin 1985, Babujian and Tsvelick 1986) and one finds, with the normalisation 
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in ( l ) ,  a spectrum 

with associated momenta 
M 

p(Al,  * A M )  = 
k = l  

where the parameters A . . . , AM 

2 tan-’[tanh( yAk/2) cot( yS)] 

satisfy the coupled equations 

sinh[(y/2)(Aj+2iS)] sinh[(y/2)(Aj-hk+2i)] j =  1,. . . , M (7) 
sinh[(y/2)(Aj -2iS)l ) =-n  k = l  sinh[(y/2)(Aj-hk-2i)] 

for some integer M. 
In the limit N+m, with M / N  fixed, the solutions of (7) cluster into strings in the 

complex plane 

A t , j  = A: + i( n + 1 - 2j +$( 1 - u2~2) , ) [  VI) + O(e-SN) 6 > 0  j = l ,  ..., n (8) 

where A t  = Re(At,j), and v2s and U, are spin parities taking the values *l. To classify 
the allowed string configurations one defines a set of integers y i  and mi (Takahashi 
and Suzuki 1972): 

y-1 = o  yo= 1 y1= bo yi+l= yi-l+ biyi i s 0  (9a 1 
mo=O m, = bo mi+l = mi + bi i 3 0  (96) 

with the numbers bi being the elements in the continued fraction expansion of v = T/ y, 
I.e. 

b, +I 
b2+* * 9 

It is here also useful to introduce the real numbers p f :  

Po= v P f I P f + l  = [bf, bf+l I * .I i20. (11) 
One can now prove that the number of elements n, and parity U, of a string are given 
by 

(12) n, = Y ~ - ~  + ( j  - m,)yf mf sj -= ml+l  

and 

U,, = 1 U,, = -1 U,, = exp{iT[(nj - I ) /  711 j +  n l ,  ml  (13) 
respectively, where again [x] denotes the integer part of x. In addition, when S > i ,  
one must require the existence of an integer r such that for some k 

1+2S=nk m, 6 k < m,+, . (14) 
As shown by Kirillov and Reshetikin (1987a), when r = 0 or 1 the vacuum is built 

from strings of one type only, allowing a rather easy access to various static properties 
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of the model. In particular, restricting v to a rational number we find for the low- 
temperature asymptotics of the free-energy per unit length 
, 

constant -pI - T ~ + o ( T ~ )  v > 2 s  r = O  

constant - p 2  - T 2 + O ( T 3 )  2 < v < 2 S < b l [ v ] ;  b l S 2 ; S Z l  r =  1. 

s+l 
(15) 

[ v 1 + 2  
This result allows for a computation of the conformal anomaly number c, which 

labels the possible universality classes at T = O .  As realised by Affleck (1986b) (see 
also Blote et a1 1986), by integrating the trace anomaly relation for a 2~ massless field 
theory over an infinitely long cylinder of circumference 1/ T, a conformal mapping of 
the cylinder onto the unit disc reveals a universal finite-size correction to the free-energy 
per volume: 

lim F /  L = constant - i m T 2 .  (16) 
L-CC 

Hence, by normalising the velocities of the collective excitations in the spin model to 
unity, assuming them to be represented by the 2~ relativistic theory (now interpreted 
as a finite-temperature theory in the infinite plane) the conformal anomaly can be read 
off from (15) and (16) by identifying terms quadratic in T. 

The energy-momentum relation in the low-energy limit is given by (Kirillov and 
Reshetikin 1987a) 

r = O  
r = l  

which yields a velocity 

r=O 
r =  1. 

Normalising U to unity implies that (15) will be multiplied by a factor U .  Comparison 
with (16) then gives for the conformal anomaly 

c = 3 k / ( k + 2 )  (19) 

where 

v > 2 s  
2 s  v = ~ 2 S <  b , [ v ] ;  b , k 2 ;  S a l .  

When v > 2 s  we thus recover the result reported in Johannesson (1988) for integer 
v. In particular, this gives some added weight to a recent conjecture by Alcaraz and 
Martins (1988) that under renormalisation the S = 1 Hamiltonian (4) flows towards 
the k = 2 wzw fixed point for all values of y in the range Os y s n / 2 .  On the other 
hand, in the interval 2 6 v 2 s  we find a new behaviour. There are here 2 s  - 1 possible 
values of c, explicitly depending on the choice of v, and hence 2 s  - 1 distinct universality 
classes. Since [ v ]  is an integer, one is led to expect renormalisation onto one of 2 s  - 1 
distinct wzw fixed points, corresponding to the possible values of the topological 
coupling k = [ v], [ v] = 2, . . . , 2 S .  To check this, one should identify the relevant and 
marginal operators of a wzw model with broken SU(2) symmetry and then make a 
comparison with the operator content of the spin problem. If the test reveals different 
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scaling dimensions, we are instead dealing with a collection of new universality classes. 
Either way, the scenario is quite intriguing. (We should perhaps add that performing 
the suggested test will be no easy matter, considering the current state of available 
methods.) 

Why should one expect the renormalisation behaviour to depend on a relation 
between spin and anisotropy? As follows from our analysis, when v > 2s the renormali- 
sation is fixed by the spin only, while for v < 2S, with S > 1, the choice of anisotropy 
decides which of several possible fixed points will attract the Hamiltonian. Before 
attempting an answer, it might be important to note that other properties of the model 
are also connected to a relation between anisotropy and spin. As observed by Kirillov 
and Reshetikin (1987a), all diagonal spin operators Sf, j = 1, . . . , N, are present in the 
Hamiltonian only through algebraic combinations of exp(i ySf). There are thus two 
periods characterising the model. One is given by the spin value through U( 1) rotations, 
while the other is determined by the presence of the exp(iySf) terms in the Hamiltonian 
and hence is equal to 2v. If v >  2S, the values of exp(iyS,’) are restricted to a semicircle 
as Sj. runs through its allowed values -S, . . . , S. On the other hand, if v < 2s there 
is no such constraint on the possible values of exp(iySj”). As found by Kirillov and 
Reshetikin, the structure of the vacuum differs fundamentally in the two casest. The 
two distinct types of critical behaviour found here thus coincide with the appearance 
of two different kinds of vacua. However, it remains to be established if, and how, 
this fact explains the observed renormalisation. 

A detailed account of the results presented here will be given in a later work. 

I wish to thank F D M Haldane and A M Polyakov for stimulating conversations on 
this topic, and F C Alcaraz for communication of unpublished results. Support from 
the Swedish Natural Science Research Council is acknowledged. 
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